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Abstract: A wide range of urban ecosystem studies, including urban hydrology, 
urban climate, land use planning and resource management require current and 
accurate geospatial data of urban impervious surfaces.  We developed an 
approach to quantify urban impervious surfaces as a continuous variable by 
using multi-sensor and multi-source datasets.  Subpixel percent impervious 
surfaces at 30-meter resolution were mapped using a regression tree model.  
The utility, practicality and affordability of the proposed method for large-area 
imperviousness mapping were tested over three spatial scales (Sioux Falls, 
South Dakota, Richmond, Virginia, and the Chesapeake Bay areas of the United 
States).  Average error of predicted versus actual percent impervious surface 
ranged from 8.8 to 11.4% with correlation coefficients from 0.82 to 0.91.  The 
approach is being implemented to map impervious surfaces for the entire United 
States as one of the major components of the circa 2000 national land cover 
database. 

 

INTRODUCTION 

The status and trends of urban land cover and land use significantly impact the 
quality of human life and urban ecosystems.  Accurate, up-to-date and spatially 
explicit data on urban land cover and land use are required to support urban land 
management decision-making, ecosystem monitoring and urban planning (Ridd, 
1995).   

One of the most important land cover types characteristic of urban and suburban 
environment is the impervious surfaces developed through anthropogenic 
activities.  Impenetrable surface, such as rooftops, roads and parking lots have 
been identified as a key environmental indicator of urban land use and water 
quality (e.g. Arnold and Gibbons,1996).  The spatial extent and distribution of 
impervious surfaces impact urban climate by altering sensible and latent heat 
fluxes within the urban surface and boundary layers; Impervious surface also 
increases the frequency and intensity of downstream runoff and decreases water 
quality.  Strong correlation between imperviousness of a drainage basin and the 

 
* This work was performed under U.S. Geological Survey contract 1434-CR-97-CN-40274.  This paper is 
preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards or 
nomenclature. 
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quality of its receiving streams has been reported.  For example, stream quality 
usually starts to degrade if more than ten percent of the area of a watershed is 
impervious (Schueler, 1994).   

In recognizing its environmental significance, impervious surface has been 
identified as one of the major components of the circa 2000 National Land-Cover 
Data base (NLCD 2000) to be developed through the Multi-Resolution Land 
Characteristics (MRLC) 2000 Consortium (Homer et al., 2002).  The MRLC 2000 
consortium was formed to meet the needs of several federal agencies of the 
United States (U.S. Geological Survey, Environmental Protection Agency, USDA 
Forest Service, NASA and NOAA) for Landsat 7 Enhanced Thematic Mapper 
Plus (ETM+) imagery and land cover/land use data.  Through the MRLC 2000 
consortium, agencies formed a partnership and pooled resources to develop: 1) 
a multi-temporal Landsat 7 ETM+ image dataset containing three dates of 
imagery per path-row for the United States, and 2) a consistently developed circa 
2000 national land cover database.  

PREVIOUS STUDIES OF URBAN IMPERVIOUS SURFACES 

Numerous research efforts have been devoted to quantify urban impervious 
surfaces using ground-measured and remotely sensed data (Deguchi and Sugio, 
1994; Williams and Norton, 2000; Phinn et al., 2000).  The methodologies range 
from multiple regression (Foster, 1980; Ridd, 1995), spectral unmixing (Ji and 
Jensen, 1999; Ward et al., 2000), artificial neural network (Wang, 2000; 
Flanagan and Civco, 2001), classification trees (Smith and Goetz, 2001), and 
integration of remote sensing data with geographic information systems (Prisloe 
et al., 2001).   

Ridd (1995) proposed a conceptual model, i.e., vegetation-impervious surface-
soil (VIS) for urban ecosystem analysis.  This framework presents a systematic 
standard for characterizing urban ecosystem from morphological, biophysical, 
and anthropogenic perspectives.  Using this model detailed land cover land use 
and biophysical parameters were obtained for urban ecosystems using remote 
sensing data.  Forster (1980) examined the relationship between Landsat MSS 
data and percent land cover types sampled at the pixel level from the Sydney 
metropolitan area using multiple regression techniques.  He found that variables 
most closely correlated with intensity of urban developed areas were those of 
normalized band ratios.   

More recent studies adopted advanced machine learning algorithms and spectral 
unmixing that allow the derivation of imperviousness at the sub-pixel level.  For 
instance, Flanagan and Civco (2001) conducted a subpixel impervious surface 
mapping using artificial neural network and an ERDAS Imagine subpixel 
classifier.  For four municipal study areas in Connecticut, the overall accuracy at 
impervious-non-impervious detection level varied from 71 to 94% with a root 
mean square error (RMSE) of 0.66 to 5.97%.  Wang et al. (2000) developed a 
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subpixel proportional land cover information transformation (SPLIT) model, a 
modularized artificial neural network-based algorithm, to quantify proportion of 
land cover types from high-resolution multispectral videography.  Overall 
accuracy achieved was 87.6%.  Spectral unmixing and classification trees 
classifier have also been capable of quantifying sub-pixel impervious surface.  
The accuracy of imperviousness estimates from unmixing was also comparable 
(Ji and Jenson, 1999; Ward et al. 2000), whereas overall within-class accuracy 
using classification trees was about 84% in a study of Montgomery County, 
Maryland (Smith and Goetz, 2001).  Thus far almost all research conducted was 
confined within a limited spatial area (one urban setting or at county-level), and 
each study used only one type of data for developing training data for model 
prediction.   
 
RESEARCH OBJECTIVES 
 
It was the goal of this research to develop a repeatable, accurate, and cost-
effective method to map large-area impervious surface percentage at 30-meter 
spatial resolution for the entire United States.  The research presented here 
described an alternative approach to extracting sub-pixel imperviousness 
information using a regression tree algorithm and Landsat 7 ETM+ as well as two 
types of high-spatial resolution imagery.   
 
The primary research questions were:  

1) is regression tree a reliable and robust algorithm for mapping impervious 
surfaces nation-wide?  

2) what are the optimal input variables for modeling impervious surfaces and 
are they scale-dependent?  

3) can a regression tree model developed using training data from one 
particular location be applied to another area with a broader scale?  

4) is the high spatial-resolution imagery a cost-effective data source for 
deriving training/test data for large-area impervious surface mapping?  

 
DATA AND PREPROCESSING 

 
Study Area 

The proposed procedure was tested in three geographic areas within the United 
States representing different spatial scales: Sioux Falls, South Dakota (local 
scale of ~1000 square km), Richmond, Virginia (sub-regional scale of ~10,000 
square km) and Chesapeake Bay of eastern United States (regional scale of ~ 
100,000 square km).   

Data 
Landsat 7 ETM+ images were the primary data source for mapping impervious 
surfaces.  Data quality of Landsat 7 ETM+ is superior to its predecessors (e.g. 
Landsat 5) with significant improvement of on-flight radiometric and geometric 
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calibration, inclusion of a 15-meter resolution panchromatic band, and an 
improved 60-meter spatial resolution thermal infrared band.  
 
Two types of high-spatial resolution images, IKONOS from the Space Imaging 
and the Digital Orthophoto Quadrangles (DOQ) of the US Geological Survey 
scanned from the National Aerial Photography Program (NAPP) color infrared 
photographs, were utilized for derivation of training/test data.  With a nominal 
spatial resolution of 1-meter, the DOQ image has three bands: green, red and 
near infrared.1 
 
Table 1 lists all Landsat data used for each of the three study areas.  For Sioux 
Falls, a leaf-on (June, 2000) cloud-free IKONOS image covering the city and 
surrounding areas was available for deriving training/validation data.  A Landsat 
7 ETM+ scene that covers the same area with only one-day apart from the 
IKONOS data acquisition date was also available along with another leaf-off 
(October, 2000) image.  Coincidence of time and similar spectral bandwidth of 
the two data sets provided good opportunities for testing impervious surface 
mapping at a local scale. 
 
Similar to Sioux Falls, Landsat ETM+ data available for Richmond study included 
two scenes (one leaf-on and one leaf-off).  The high-resolution data used for 
deriving training and test data were the DOQs acquired in spring of the late 
1980s to early 1990s.  
 
For the Chesapeake Bay study, nine ETM+ scenes were required to cover the 
entire area.  Three Landsat images (spring, summer, and fall each) were 
available for each path/row.  Training data source was the DOQs acquired in 
spring and summer of the late 1980s to 1990s. 
  

Image Preprocessing 
All ETM+ data preprocessing followed standard specifications including:  
1) radiometric and geometric calibration and terrain-correction (Irish 2000),  
2) conversion from digital number to at-satellite reflectance (for six reflective 
bands) or at-satellite radiance temperature (the thermal band), 3) referenced to 
the National Albers equal area map projection and re-sampled using cubic 
convolution to 30-meter resolution.  After initial pre-processing Tasseled-cap 
brightness, greenness and wetness were derived using at-satellite reflectance-
based coefficients (Huang et al. 2002b). 
 
For IKONOS data the 1-m panchromatic data was fused with 4-m multispectral 
bands, resulting in an image of four bands (blue, green, red and NIR) with 
“sharpened” spatial resolution of 1-m.   Both IKONOS and DOQ data were in 
UTM projection and were reprojected to Albers equal area projection.  To ensure 

 
1 Detailed information on the DOQ images is available at http://edc.usgs.gov/glis/hyper/guide/usgs_doq. 
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a high degree of accuracy in image co-registration (between high resolution 
imagery and the Landsat 7 ETM+ imagery), exact projection transformation was 
used.  Visual inspection revealed that misregistration errors between the 
DOQ/IKONOS and the ETM+ images were generally less than 1 ETM+ pixel.   
 
For the Chesapeake Bay area, additional data preprocessing was made by 
Earthsat Corporation (under USGS contract number 010112C0012) to mask 
clouds and cloud shadows and hazy areas.  Spectral values of each ETM+ 
bands of the masked areas were subsequently estimated based on cloud-free 
images from other two dates using regression tree techniques.  Detailed 
description of the procedure is beyond the scope of this study.  This process was 
deemed necessary because per-pixel mapping required non-contaminated 
reflectance data and spatially continuous estimates were desired.   

 
 

METHODS AND PROCEDURES 
 
The proposed methodology for impervious surface mapping consists of several 
steps: 1) algorithm selection, 2) training/validation data development, 3) 
predictive variable selection and initial regression tree modeling and assessment, 
and 4) final modeling and mapping (fig. 1).   
 

Regression Tree Algorithm 
 
The general classification and regression tree (CART) algorithm conducts a 
binary recursive partitioning process.  The process splits each parent node into 
two child nodes and the process is repeated, treating each child node as a 
potential parent node (Breiman et al., 1984).  The regression tree algorithm 
produces rule-based models for prediction of continuous variables based on 
training data.  Each rule set defines the conditions under which a multivariate 
linear regression model is established.  Regression tree models can account for 
non-linear relationship between predictive and target variables and allow both 
continuous and discrete variables as input variables.  It has been reported that 
accuracy and predictability of the regression tree models were better than those 
of the simple linear regression models (De’Ath and Fabricius, 2000; Huang, 
2002a).  The regression tree algorithm we used to model impervious surfaces is 
a commercial software called Cubist,2 which is one type of the regression tree 
algorithm.3    
The quality of the constructed regression tree can be measured by an average 
error R of a tree T, expressed by 
 

 
2 use of any trade, product, or company names is for descriptive purposes only and does not imply 
endorsement by the U.S. Government.  
3 detailed information on Cubist software is available at http://rulequest.com/cubist-info.html. 
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ρ represents the regression plane through the example set, and N is 
the number of samples used for establish the tree. 
 
In order to compare the quality of several regression trees, a relative error is 
often used and is defined as: 
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where µ(R ) is the average error that would result from always predicting the 
mean value.  It is used to standardize the average error, . )(TR
 
Besides the average error and relative error, Cubist also calculates Product-
Moment correlation coefficient (r) between actual and predicted values.  All three 
statistical measures were used throughout the study to evaluate model 
performance.     
 
Another feature of Cubist is its ability to estimate predictive accuracy by n-fold 
cross-validation.  Using this option the training data set can be divided into n 
blocks of roughly equal size.  For each block in turn, a model is built from the 
data in the remaining blocks and tested using the holdout block.  The final 
accuracy of the model is estimated by averaging model results from all n-fold 
tests (Michie et al., 1994).    
 

Training/test Data Collection 
 
Successful modeling using regression tree techniques relies on the quality of 
training/test data.  In this study, training data selection was constrained by 
potential data availability nation-wide.  A large number of training data were 
collected for each study area representing spectral and spatial variability of 
impervious areas due to differences in building materials, ages, surface colors 
and spatial orientation. 
 
For Sioux Falls, four subset windows of approximately 2000 x 2000 meter each 
were selected from the IKONOS image.  Training and test data of impervious 
surfaces were obtained by an unsupervised clustering algorithm.  Each cluster 
was interpreted and labeled with one or more of the five land cover classes 
(water, vegetated areas, bare soil, impervious surfaces and shadow), and was 
further modified by screen digitizing and recoding to reduce misclassification.  A 
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final product was a binary raster image of impervious versus non-impervious 
pixels at 1-meter. 
   
Training and test data for Richmond were derived from four DOQ image windows 
(1,800 x 1,800 meters each).  Three of them were in the metropolitan Richmond 
area and the other was in City Farm located in the west part of the study area.  
These image windows were visually selected to capture spectral variation of 
impervious surfaces, and to avoid areas where land cover changes occurred 
between the acquisition of the DOQ and the ETM+ images. 
 
The selected DOQ images were classified using a decision tree classification 
program called C5 (Quinlan, 1993).  Each pixel was classified as one of five land 
cover classes: impervious surface, forest, grass, water and shadow.  The 
classifications were manually edited to correct confusions between impervious 
surface and other classes.  The reference data derived from each DOQ image 
were then divided into nine equal-sized blocks, six of which were randomly 
selected for use as training data and the remaining as test data.  Using randomly 
selected pixel-blocks rather than individual pixels as test data should reduce 
possible bias in model accuracy assessment due to spatial auto-correlation 
between training and test data (Campbell, 1981; Freidl et al., 2000). 
 
For the Chesapeake Bay area, a special module was developed by Earthsat 
Corporation to select training and test data based on spatial and spectral 
characteristics of the imagery and impervious surface.  The selection process 
took into account spectral variance accounted for by each selected sample and 
continued to add samples until the variances captured reached a pre-defined 
threshold.  As the result, the process selected twenty DOQs and a portion of 
each DOQ was classified into impervious surfaces using a combination of 
unsupervised/supervised methods with some manual editing and recoding. 
 
For all three-study areas, once the final classification was made, all 1-meter 
pixels mapped as impervious surface were tallied using a 30x30 meter grid 
geographically aligned with ETM+ pixels to compute impervious surfaces 
percentage.  In this process, the IKONOS (or DOQ) 1–meter pixel whose 
coordinates matched that of the upper-left ETM+ pixel was used as the starting 
point of the 30-meter grid.  One-meter shadow class pixels were excluded from 
the percent impervious calculation within each 30-meter pixel.   
 

Predictive Variable Selection and Initial Regression Tree Modeling 
 
An initial regression tree model was developed using training data obtained from 
the high-resolution data.  It involved two tasks, feature selection for most relevant 
input variables and preliminary regression tree modeling.  Both tasks were 
accomplished using the Cubist software.  Although all spectral bands could be 
input to Cubist, using fewer variables to reduce data volume and computing time 

U.S. Department of the Interior                                                                     U.S. Geological Survey                 8 



 
 
was desirable.  The relative importance of the predictive variables was assessed 
based on their position within a multivariate linear regression at a given tree 
node, because the variables were ordered in decreasing relevance to the percent 
imperviousness.   
 
Once the initial prediction was made, quality control was performed.  The 
predicted percent impervious surface was evaluated either by cross-validation 
(Sioux Falls) or by using holdout test data (Richmond and the Chesapeake Bay) 
as well as visual inspection of the predicted maps.  For areas where magnitude 
of over- and/or under-prediction exceeded 10%, additional training samples were 
selected and a new model built to improve prediction.   
 
 
 

Final Regression Tree Model and Mapping 
 

The final regression tree model was built using the most relevant input variables 
and all available training data, and then applied to all pixels to map percent 
impervious surfaces.  Accuracy of the final model was obtained through 
validation using holdout test data.  Test error estimates generated by the Cubist 
software were considered reliable because they were based on set-aside test 
data not used to build the regression tree model.   
 
Final products consisted of: 1) spatial estimates of subpixel percent 
imperviousness at 30 meter resolution, 2) rule sets on conditions under which 
each prediction model was built, and 3) error estimates of the prediction through 
validation. 
 
RESULTS 
 

Sioux Falls, South Dakota 
 
Several regression tree models were built by Cubist using combinations of 
different input variables (fourteen ETM+ spectral bands and six Tasseled-cap 
transformed bands from leaf-on and leaf-off images).  Table 2 lists accuracy 
estimates, through cross-validation, when various combinations of input variables 
were used.  The correlation coefficient ranged from 0.82 to 0.89 with an average 
error of 9.2 % to 11.4%.  In most cases, changes in accuracy estimates were 
rather small, suggesting use of fewer input variables.   
 
Analysis of rule-sets from the model output revealed that the most important 
variables were Tasseled-cap greenness, band 4 (NIR), band 7 (mid-IR) and band 
3 (VIS) of the leaf-on image.  Thus, the final regression tree model was built 
using leaf-on data only and applied to map the entire city of Sioux Falls.   
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Visual inspection revealed that the spatial pattern of modeled impervious surface 
was quite reasonable (fig. 2).  Major urban centers and a shopping mall complex 
were predicted with the highest percent imperviousness.  The model also 
correctly predicted different intensity in development between old and newly 
developed residential areas.  A major weakness of the model prediction was at 
the edge of the city where some bare soil was mapped as the medium-to-high 
imperviousness due to spectral confusion.   
  

Richmond, Virginia 
 
Several regression tree models were built by using different combinations of 
spectral bands and band ratios.  Based on evaluations using hold-out data (6962 
pixels), the model developed using a minimum number of 5 bands, i.e., leaf-on 
bands 1, 4, 5, 6 and 7, was almost as accurate as those developed using more 
bands (by adding those of second and third power of the original ETM+ spectral 
bands and a texture band).  The accuracies of different models differed only 
slightly, with correlation coefficients ranging from 0.88 to 0.91 and average error 
from 8.8% to 10% (table 3).  Therefore, a final model was made using a subset of 
leaf-on spectral bands only (band 1, 4, 5, 7 and a thermal band). 
 
Visually, the model predictions were quite reasonable in urban area located 
within the two scenes, including Richmond, Petersburg, and a part of Newport 
News and Frederick in the east, and Charlottesville and Lynchburg in the west 
(fig 3a).  Outside the urban areas, however, the model did predict considerable 
amount of imperviousness in some fallow fields and bare ground.  Much of the 
problems should be fixable if an accurate non-urban mask is available.  We 
made some efforts to create an urban mask in a subsequent study.  
 
As one of the research objectives, we tested whether a model developed from 
one city can be applied to another city.  To do this, a regression tree model 
established using Sioux Falls training data was applied to the Richmond area.  
 
Figure 3 shows, to a large extent, a similar pattern between two imperviousness 
maps (3a using regression model built from the Sioux Falls training data and 3b 
using Richmond training data).  The areas with high impervious surface were 
similarly mapped by using the two models, probably due to the fact that both 
cities are located in the mid-latitude with minimum topography.  Main differences 
between the two were found in low-to-medium intensity developed areas, where 
percent impervious surfaces estimated using the Sioux Falls model was higher 
as compared to that predicted using the Richmond training data.  Further 
checking using high-resolution DOQ suggested that the average of the over-
prediction using the Sioux Falls model was about 10%.  The discrepancy is likely 
due to differences between the ETM+ images of the two locations.  The presence 
of haze within the leaf-on image of Richmond resulted in high spectral values of 
the three visible bands.  Because visible bands were mostly positively correlated 
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with the percent impervious surface in Sioux Falls model, when applied to 
Richmond, the higher values of the visible bands caused an overestimation. 
 
The results of this test imply a possibility to spatially apply impervious model to a 
different area with similar intensity in urban development using good quality 
images with minimum topographic and atmospheric impacts.   
 

Chesapeake Bay Area 
 
To test robustness and feasibility of the method when applied to large areas, 
several regression tree models were built for the Chesapeake Bay area by 
Earthsat Corporation (under a USGS contract number 010112C0012).  Model 
evaluations using holdout data resulted in correlation coefficients varying from 
0.87 to 0.90 with average error from 8.8% to 10.2% (table 4).  Quantitatively, 
200,000 pixels within the training DOQs were randomly selected and used to 
assess model prediction by comparing model predicted and actual values.  The 
result showed that the error was near normally distributed and approximately 
70% of the samples fall within 18% of absolute error bound (fig. 4).    
 
Overall, estimation of percent imperviousness improved with ETM+ image of all 
three dates utilized.  Use of three tasseled cap bands performed equally well as 
compared to the results obtained using all six spectral bands.  The final 
impervious surface layer was produced using tasseled cap transformed bands 
from all three dates and a leaf-on thermal band.   
 
Judging by spatial pattern, the overall performance of the model was satisfactory 
(fig. 5).  In particular, the model predicted well for areas with medium-to-high 
imperviousness, extending from the Philadelphia-Baltimore-Washington DC 
metropolitan areas to its surroundings.  Areas mapped as lower-medium 
imperviousness were mostly reasonable but with notable commission errors in 
some bare fields.  
 
Since our ultimate goal is to map the impervious surfaces nation-wide, a major 
challenge is to accurately map imperviousness of all urban areas, and at the 
same time, minimize commission errors.  Towards this end, we tried to develop 
an urban mask from several ancillary data layers.  One of these was a raster 
image of cities derived from the NOAA Defense Meteorological Satellite Program 
(DMSP) night light data (Elvidge et al., 1997).  Another one was an aggregate of 
urban land cover/land use classes from the USGS 1990 national land cover 
dataset (Vogelmann et al., 2001).  Both images were of 1-kilometer spatial 
resolution.  In addition, a vector file of the TIGER 2000 roads from the U.S. 
Census Bureau was buffered and combined with the two raster images.  
Although being useful, this urban/road mask was problematic in some areas due 
to the coarse spatial resolution of the images and road buffers.   
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CONCLUSIONS 
 
We developed an approach to quantifying impervious surfaces as a continuous 
variable using Landsat ETM+ and high-resolution imagery.  Estimates of percent 
impervious surface at the subpixel (30 meter) level were modeled and spatially 
mapped using a regression tree algorithm.  Three geographic areas representing 
local, subregional and regional scales were tested using this method, and the 
model performance was assessed through holdout data not used to build the 
models.   
 
Regardless of change in spatial scale, the regression tree was capable of 
predicting imperviousness with consistent and acceptable accuracy.  For all three 
areas tested, the correlation coefficient between model predicted and actual 
percent impervious surface ranged from 0.82 to 0.91, and the average error 
varied from 8.8 % to 11.4%.  Because the procedure was mostly automated and 
took only limited computing time, we believe that the method is cost-effective and 
suitable for large-area imperviousness mapping.    
 
Using spectral bands from both leaf-on and leaf-off imagery usually improved 
model prediction, but only to a limited extent.  When only a single image was 
used, the regression tree was still able to predict impervious surfaces without 
significant loss in accuracy.  The use of Tasseled-cap transformation bands 
reduced the number of input variables without compromising quality of the final 
product.  For all three tests, the most relevant set of input variables in model 
prediction were one band each in visible, NIR and mid-IR spectrum or the three 
Tasseled-cap bands.  In addition, using either DOQ or IKONOS as training data 
showed little difference in terms of accuracy predicted by using regression tree 
algorithm.   
  
Applying the regression tree model developed from one urban area to another 
one with similar geographic settings may be possible provided that the input 
ETM+ images for both areas are acquired in the same season with little 
atmospheric impacts (clouds and haze).  This spatial extensibility may be 
beneficial in large-area impervious surface mapping because training/validation 
data can be quite expensive to obtain, and in some cases, may not even be 
available.  It should be noted however, that we have only tested one pair of cities 
and the results, hence, are not conclusive.  Further tests are needed in other 
urban areas with different environmental settings (e.g. arid or tropical areas) to 
fully understand this issue. 
 
In this study, all validation of the regression tree models was made through either 
cross-validation and/or an independently data.  For large-area impervious 
surface mapping, collecting field-based measurements for training/test data is 
likely cost-prohibitive.  High-resolution imagery provides an alternative.  It is 
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important to use a probability-based sampling protocol for selecting validation 
data from an image.  In this way, the validation data will be independent from the 
training data with minimum spatial auto-correlation (Friedl et al., 2000).    
 
In all three tests of varying spatial extent, commission errors in mapped 
impervious surfaces occurred due to similar spectral properties among bare 
fields, county roads, some rocks/sand beach and urban built-up areas.  This is 
particularly an issue for large-area mapping and is yet to be resolved.  One 
possible improvement is to develop an accurate urban mask based on satellite 
imagery with spatial resolution better than 1-kilometer and other ancillary data 
(e.g. an up-to-date version of the US 2000 Census data).   
Methods developed from this pilot study have been revised and implemented for 
the operational phase.  The production of NLCD 2000 is proceeding using 
mapping zones defined based on ecological and environmental characteristics.  
Subpixel impervious surface estimates of two mapping zones were finished in 
January 2002 with completion for the entire United States targeted for 2004.   
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Figure 5.  Spatial prediction of subpixel percent imperviousness for the 
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Fig. 4 
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Fig. 5 
 
 
 
Table 1. Landsat 7 ETM+ imagery utilized for imperviousness mapping  
 

Location Path Row Spring Summer Fall 
Virginia 15 34  Jul. 28, 1999 Nov. 17, 1999 
 16 34  Jul. 19, 1999       Nov. 8, 1999 
Sioux Falls 29 

 
30  June 30, 2000 Oct. 20, 2000 

East Coast 14-15 32-35 March-April 
2000-2001 

July 
1999 

Sept.-Oct. 
1999-2000 
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Table 2. Estimation of mean average error (MAE) and correlation coefficient (r) through 
cross-validation for Sioux Falls, SD using various combinations of predictive variables.* 
 

 
Test  

 
onb1-6 

 
offb1-6 

 
onb7 

 
offb7 

 
onTC 

 

 
offTC 

 
MAE(%
) 

 
        r 

 
1 

 
X 

 
X X X         X X 9.2 

 
0.89 

 
2 

 
X 

 
 X    X 9.5 

 
0.88 

 
3  X X  X 10.7     0.85 
        

4 
 

X X 
 
 

X X  
 

9.2 0.89 

5 
 

  
 

X X X X 9.6 0.88 
 
 

6 
 

X 
 

 X    9.6 0.88 
 

 
7 

 
 

 
X 

 
X 

 
10.7  

 
0.85 

8   
 
 

X X  10.0 0.87 
 

9    X         X     11.4   0.82 
 
     *onb1-6: six bands total from leaf-on ETM+ visible, NIR and mid-IR bands 

onb7:  leaf-on ETM+ thermal band 
offb1-6: fall ETM+ visible, NIR and mid-IR bands 
offb7: fall ETM+ thermal band 
onTC: three bands total from leaf-on Tasseled-cap bands (brightness, greenness, 
wetness) 
offTC: three bands total from fall Tasseled-cap bands (brightness, greenness, 
wetness) 

 
 
 
 

U.S. Department of the Interior                                                                     U.S. Geological Survey                 22



 
 
Table 3. Estimation of mean average error (MAE) and correlation coefficient (r ) through 
holdout data for Richmond, VA using various combinations of predictive variables.* 
 

 
test  

 
onb1-6 

 
offb1-6 

 
onb7 

 
offb7 

 
onTC 

 

 
offTC 

 

 
MAE(%) 

 
        r 

 
1 

 
X 

 
X X X         X X 

 
8.8 

 
0.91 

 
2 

 
X 

 
X X X     

 
8.8 

 
0.91 

 
3    X  10.0    0.88 
        

4 
 

  
 
 

  X X 
 

9.5 
 
 

0.89 

5 
 

  
 

X  X  9.4 0.90 
 
 

6 
 

X 
 

 X    9.1 
 

0.90 
 

 
7 

 
 

 
 X 

 
      X X X 

 
9.2  

 
 

 
0.90 

        
         

 
  *   onb1-6: six bands total from leaf-on ETM+ visible, NIR and mid-IR bands 

onb7:  leaf-on ETM+ thermal band 
offb1-6: fall ETM+ visible, NIR and mid-IR bands 
offb7: fall ETM+ thermal band 
onTC: three bands total from leaf-on Tasseled-cap bands (brightness, greenness, 
wetness) 
offTC: three bands total from fall Tasseled-cap bands (brightness, greenness, 
wetness) 
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Table 4. Estimation of mean average error (MAE) and correlation coefficient (r ) through 
holdout data from the Chesapeake Bay area using various combinations of predictive 
variables.* 
 

 
Test  

 
onb1-7 

 
offb1-7 

 
spb1-7 

 
onTC 

 
offTC 

 

 
spTC 

 

 
MAE(%) 

 
        r 

 
1 

 
X 

 
X     

 
9.0 

 
0.89 

 
2 

 
X 

 
X X  

 
8.8 

 
0.90 

 
3   X X  10.2    0.87 
        

4 
 

  
 
 

 X X X 
 

9.3 
 
 

0.88 

        
      
        
         

 
    * onb1-7: seven bands total from summer ETM+ bands 

offb1-7: seven bands total form fall ETM+ bands 
spb1-7: seven bands total from spring ETM+ bands 
onTC: three bands total from summer Tasseled-cap bands (brightness, greenness, 
wetness) 
offTC: three bands total from fall Tasseled-cap bands (brightness, greenness, 
wetness) 
 spTC: three bands total form spring Tasseled-cap bands (brightness, greenness, 
wetness) 
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